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ABSTRACT
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Results of a study of the feasibility of using Singularity Expansion Method

(SEM) data to synthesize broad-band equivalent circuits for loop and wire

structures are reported. The positive realness of admittances derived are

studied, on the basis of both pole-pair groupings and eigenmode groups within

the SEM formalism. Synthesized circuits are given for a center-driven and a

quarter-driven straight wire antenna, and for a circular loop. Results are

1. compared with those derived by means of numerical solution of the time-

dependent integral equations for each structure. The sensitivities of the

response to changes in the values of poles and to circuit element values are

Iconsidered.
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CHAPTER I

INTRODUCTION

1.1 Description of SEKM

Much attention has been focused on the use of the singularity expan-

sion method (SEM) to solve broad-band transient electromagnetic field problems

involving scatterers since its formalism was developed by Baum [1,21 in 1971.

SEM formalism grew from the experimental observation that the transient

response of scatterers is dominantly composed of one or more damped sinusoids.

Since such damped sinusoids correspond to conjugate pole-pairs in the complex

frequency plane (or s-plane), Baum postulated that a complete representation

of the transient response could be obtained by knowledge of all s-plane sin-

gularities of the object's response. Such s-plane singularities potentially

include poles, essential singularities, branch cuts, and entire functions. A

complete SEM representation of a scatterer consists of a set of singularities,

the modal current distribution associated with a singularity, and a normaliz-

ing coefficient. Marn [3] showed that perfectly conducting objects in free

space, such as are dealt with in the present work, have only pole singular-

ities. Hence only pole singularities are considered in this work.

Because the SEM approach reduces the problem of finding a transient

response for a given object to that of finding the object's singularities, the

associated modal distributions, and the coupling factors which weight a given

singularity's contribution to the response for a given exciting waveform, we

see that SEM offers a more compact and efficient way of representing transient

responses than previous methods. These methods include numerical solutions of

* differential/integral equations in the time or frequency domain, and integral

i Ii
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operator modal approaches. The connection of the latter approach, sometimes

referred to as the eigenmode expansion method (EEM), to SEN has been demon-

strated by Baum [4]. In the present work extensive use of EEM in conjunction

with SEM is made. The utility of SEM lies in the low and intermediate fre-

quency ranges, and is particularly useful for studying the response of scat-

terers to the nuclear electromagnetic pulse (EMP) because of the presence of

frequencies whose wavelengths range from long to short compared to scatterer

dimensions in such pulses. In addition to compactness and efficiency, SEM

offers greater physical insight into a problem than other methods.

1.2 Scope of Present Work

The motivation for the present work derives from the insight that

it may be possible to construct passive RLC (resistor, inductor, capacitor)

circuits from the pole and residue data of SEN. Such circuits might then be

used to predict the transient current response of an object to various wave-

forms. This idea has been formalized by Baum (5,6] and the present work

centers on the feasibility of this approach for the construction of some

realizable equivalent circuits for radiation-gathering structures - in par-

ticular on the positive real considerations of realizability for convenient

formalisms.

In a previous work Hess [17] has performed an EMP coupling analysis

using transfer impedances derived from SEM. Schaubert [16] has recently con-

structed lumped-element equivalent circuits for a center-driven dipole and a

Yagi antenna, using experimentally derived SEM data. Schaubert extracted SEM

data by means of Prony's algorithm from the antenna terminal voltage wave-

form due to a step-like excitation, and used this data to construct the total

impedance of the antennas. Schaubert then used Brune's synthesis method to
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derive equivalent circuits. The present work uses theoretically derived SEM

data and addresses the problem of realizing the antenna impedance by indi-

vidual, transformerless, circuit modules which can be related to the SEM data.

Baum [5,6] suggested the construction of equivalent circuits on a

pole at a time basis, a conjugate pole-pair basis, and an eigenmode basis, and

. gave generalized formal circuits for each type of synthesis. The realizabil-

ity of the formal circuits was not treated in detail. The formal development

of SEM leading to equivalent circuits is left to Chapter II. The case of

conjugate pole-pair synthesis is examined briefly and related to earlier work

by Guillemin [7], in order to illustrate some of the salient aspects of the

current work. A more detailed consideration of this and related problems is

given in Chapter III.

The physical realizability of a given impedance or admittance

quality hinges on whether or not that quantity is a positive real (PR) func-

tion of the complex frequency a. A positive real function is defined as a

function that is real for s real, is analytic in the right half-plane, and

whose real part is positive along the jw axis. Additionally, any poles on

the jw axis are simple with real and positive residues. It is instructive to

study the conditions under which a conjugate pole-pair exhibits positive real-

ness ("PRness").

The admittance associated with the nth SEM pole is written as

an
Yn(s) - n (1.1)

where sn  an + Jwn is the complex pole and a n  a + Jn is the complex

residue. A modified form of this admittance, which has the property of being

zero at zero frequency, is written as

-j ----- I
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a a
Y (s) =+ s (1.2)

n1 S- a sn n

so that Y' (o) = 0 is physically consistent with the terminal admittance of a

simply-connected scatterer.

SEM poles are either purely real or occur in conjugate pairs. The

conjugate pair case is the more general one. The admittance of the nth con-

jugate pole-pair is then, in unmodified form,

a a
YcP(s) - n + n (1.3)

n n

or

2 Real(an)s - 2 Real(a*sn)
ycp(s) nn (1.4)n s2 - 2 Real(sn)s + Is 12

In this form we see that the coefficients of ycP(s) are real valued, as they
n

must be for circuit realizability. The other criterion necessary to ensure

realizability of yCP(s) is the non-negativeness of its real part along then

jw axis.

Guillemin [7] showed that for an unmodified admittance function

formed by conjugate pole-pairs to be PR, certain conditions must be met. If

we let

d S+ d 0 , (1.5)
n 2 +b s +b 0

with

At!



d 2an b1 n

do - -2 Real(ansn) bo - ISnI 2  a 2 + 2

--2(anon + 6nwn) (1.6)

We see that b1 and b0 are positive for a pole in the left half-plane, while

d1 and do may be of either sign. In order to find what conditions need to

apply to d1 and do for yCP(s) to be realizable, we need to find its real part,

and check for non-negativeness at s - jw. This leads to the condition

dob 0 + (dlb, - do)w 2 Z 0 (1.7)

This requires

dlb1 _ do _ 0, (1.8)

which leads to the PR conditions

-a + > 0 (1.9)

and

-anan - anW n a 0 (1.10)

We can combine these conditions into a single expression which reflects the

necessary restriction on the residue for a PR function to result. This

expression is

n > nIon - •l.l
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This condition is illustrated graphically in Figure 1. These and similar PR

conditions are used extensively in Chapter III. For YCP(s) to be PR, the
n

residue must lie within the shaded portion of the a-plane. Unfortumately, it

is seen that most SEM poles and residues fail to meet this criterion, and

ways of circumventing this difficulty are devised. The parameter tests which

are required for modified conjugate pole-pairs have been derived, and are

presented in Chapter III.

In Chapter II, the formal development of SEM in conjunction with

EEM as applied to equivalent circuits is given, and the sources of SEM data

used in this study explained. Chapter III deals with PR considerations of

functions derived from SEM data on conjugate pole-pair and eigenmode bases,

and examines pole/residue error considerations. Chapter IV encompasses some

synthesized circuits for wire and loop objects, and compares the results

obtained from these circuits and analyzed by a SCEPTRE circuit analysis pro-

gram to results obtained from a thin wire-time domain (TWTD) program. Also

in Chapter IV the sensitivity of these circuits is considered. Chapter V

gives the conclusions reached by this study, and points out areas which need

further consideration.
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Figure 1: The PR condition for an unmodified nole-
pair admittance. The a-plane is superimposed
on the s-plane.
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CHAPTER II

FORMAL DEVELOPMENT OF EQUIVALENT CIRCUITS

2.1 Introduction

In this section we consider the problem of the broadband admittance

of an arbitrary scatterer or antenna at a gap region in the object. The

approach is to cast the object's terminal pair formed by the gap into the

form of a Norton equivalent circuit. Then, using SEM, the equivalent admit-

tance is found in the form of a residue series in the complex frequency

variable. Subsequently, network synthesis techniques are applied and equiva-

lent circuits constructed. Three different generic circuit configurations

are considered, corresponding to three different levels of grouping the SEN

poles. In the first circuit, the admittance formed from the individual poles

is the basic module. In the second the pole-pair admittance formed by group-

ing a conjugate pole-pair together is the basic module. Finally, the admit-

tance formed by grouping the poles according to e- genmodes with which they

are associated, as directed by EEM results, provides the basic module. The

admittance formed by eigenmode grouping we term a "terminal eigenadmittance".

In the last part of the chapter the sources of the SEM data used in

this study are discussed.

2.2 Formulation of the Norton Equivalent Problem

Figure 2 gives the steps required in defining the Norton equivalent

for an active circuit with a single port. The active circuit can be replaced

by a single equivalent admittance and a current generator in parallel, as in

Figure 2a. In Figure 2b the methods for finding the current generator and

--
:' -. A .. _ . . , - 8-.
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IACTIVE POR T Is( ) Y\POCIRCUIT OI:t I POR T
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0

Figure 2a

ACTIVE ACT IV
CIRCU)SOURCES 0 Y(S)

Figure 2b

Figure 2: Defining the Norton equivalence admittance and
short circuit current.
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equivalent admittance, both necessary for the replication of the active cir-

cuit as seen by the port, are illustrated. The short-circuit current is found

by shorting the port of the active circuit, and the equivalent admittance is

found by setting the sources of the active circuit to zero and measuring the

admittance seen by thei port. The following development is essentially that of

Baum [5]. It is reproduced here for the sake of completeness.

The single port scatterer problem is defined in Figure 3. In this

:4
figure, S is the surface of the scatterer, all of which is not shown. Thea

gap which is formed by parting the scatterer with a plane is denoted by Sg

a is a unit vector defining gap orientation and A is the gap width.g

Using this geometry, we desire to find the Norton equivalent repre-

sentation of the antenna as seen by the gap (feed-point). The method is

illustrated in Figure 4. The equivalent admittance is found with the aid of

Figure 4a. The first step is to specify an electric field at the feed point.

The ratio of gap current response to the voltage associated with the specified

field yields the terminal admittance. We choose a field that is divergence-

less in the gap volume, i.e., a quasi-static electric field. The field is

represented then by

9('r,t) = +V(t)e A(r) ,(2.1)
g

a
where e (r) " . V(t) is the gap voltage.

Having defined the electric field across the gap, we need a suitable

definition of the current 1(t) throigh the gap. For this we integrate the

current density over the surface S of the gap and average over the longitu-
g

dinal direction of the gap.



So

Figure 3: The scatterer/antenna gap geometry.
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So

Figure 4a

So

z +

I sc (S)

Sol

Figure 4b

Figure 4: The scatterer/antenna admittance and short
circuit current formulations.



I (t) - f S(rt) • e (r) ds dz

[ i " <J(,,t) ;g(>g(2.2)

g g

-_ where (t) is the surface current density, z+ ' denote the edges of the

gap, and the notation <> denotes spatial integration over the cylindrical

-- - surface forming the gap.

The equivalent admittance of the gap is then

i(s) 1 j_- 49 g(S) r ~ s , .. S) ; e g(r) > (2.3)

g V(s) V(s) g

where - represents the two-sided Laplace transform.

The procedure for finding the short-circuit current is detailed in

Figure 4b. Here the sources are represented by an elv, tric field incident on

the antenna. The short-circuit current through the shorted gap is then cal-

culated from Equation (2.2), with E. (r,s) - (r)V(s).
inc g inc

The present work is concerned entirely with the equivalent admit-

tance depicted in Figure 4a and the positive real considerations of that

solution. Therefore the derivation of the short-circuit current generator is

not given here. Readers interested in this subject are referred to Baum [5].

2.3 Eguivalent Admittance Circuits

We construct formal equivalent admittance circuits using the singu-

larity expansion of the current J(r,s) as a tool. Three such circuits are

constructed. These circuits, in order of the complexity of the modules from

which they are constructed, are composed of

L A
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- pole at a time admittances

- pole-pair admittances

- terminal eigenadmittances

The singularity expansion of the current in the frequency domain is

[5]

V('s (s) Z fZ' n(r) (s - sn~ + Je(r,B) (2.4)

where V(s) is the voltage across the gap, ;ni is the class I coupling coeffi-

cient, and i(r) is the natural current mode. The index n indexes over the

eigenmode sets of poles, and the index i indexes the individual poles in an

-eeigenmode set. J (r,s) is a possible entire function contribution. Several

researchers [8] have conjectured this contribution to be zero when the sum-

mations are ordered over eigenmodes as indicated in (2.4). The entire

function contribution is not considered in this work.

Inserting this form of J(r,s) in Equation (2.3), we obtain

Yg(s) < < n i - Sni)-l + Je(s)1 ; g(r)>g (2.5)

or

SY(s) EZ ani(s - sni) - I + ye(s) (2.6)

~n i

- E Eini(s) + ye( , (2.7)
n i

where

a -i <T i Jni (r) ; 9(r)>g9 (2.8)



~/

and ye(s) is the entire function contribution, if present. The term a is

termed the residue associated with a pole sni.

Equation (2.7) is now used to construct formal circuit diagrams. The

first of these is given in Figure 5, in which the modules are formed from one

pole at a time. In this figure the port representing the antenna gap is on

the right, with voltage V(s) across it and current I(s) into it. The modules

are placed in parallel as dictated by Equation (2.7), and the entire function

modules are also shown.

Many objects, such as dipole antennas, exhibit a zero admittance at

zero frequency. It is desirable to modify the above admittance forms to

exhibit this property. We do this by subtracting off the value of the admit-

tance at zero. Writing the admittance in this form gives

Y(s) = 1 ai s- i + n + e n (2.9)S nl

EEYn(S + e (s) , (2.10)
ni

where Y'i(s) is termed the modified admittance module by Baum. This form

differs from the unmodified form by only the addition of a constant term.

The equivalent circuit construction with modified admittances would take the

same form as Figure 5. We note that the modified form is inappropriate to

the pole at zero for multiply connected objects because the subtractive

factor is undefined.

Since in general both the residues and poles in Equation (2.6) are

complex, pole-at-a-time modules may contain unrealizable elements. This is

demonstrated in the next chapter. As a step toward the development of real-

izable circuits, modules formed by grouping conjugate pole-pairs together are
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studied. This can be done for both modified and unmodified admittances. In

the unmodified case we have, for the pole-pair module,

where

+ ( s )  (2.12)

and Yni(a) is the conjugate. Figure 6 illustrates this circuit arrangement.

In this figure admittances whose poles have no imaginary part are designated

by Y no(s).

The final circuit considered consists of terminal eigenadmittance

modules, and is represented in Figure 7. Here all poles belonging to an

eigenmode are gathered into one module, and the complete circuit is the

parallel sum of these modules. Again, either modified or unmodified forms

may be used. The module for the nth unmodified eigenadmittance is

a Eg(s) Y n (s) + Y no( . (2.13)

i

In Chapter III the PRness of these different circuit constructions

is discussed, and in Chapter IV passive, realizable circuits are built to

give the admittance of straight wire and circular loop antennas.

2.4 Sources of SEM Data

2.4.1 Straight Wire Data

In a previous work Tesche [91 has derived the SEM data for the

straight wire, using a method of moments (MoM) solution to Pocklington's

I
8)°
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integro-differential equation for the axial current flowing on the wire

I(zs). This equation has the form

inc F 2  2 1 L-s (Z's) 3Z2 " 2 I(z',s)K(z,z',s) dz' (2.14)

where

12-ff --IR
K(z,z ,s) c ad* (2.15)

7rd 4irOR

and

R [ (z -z')2 + d 2sin2 (_k)]j/ (2.16)

and L is the length of the antenna and d is the wire diameter.

When Equation (2.13) is cast into MoM form, the result is

77S I(-s) - V(s))

Here zTs) is the system nxn matrix, where n is the number of zones on the

antenna, and I and V are, respectively, the response and source vectors, each

of dimension n. Using this formulation, then the SEM poles are found by

solving

det - 0 (2.18)

for the nontrivial solutions. The natural current modes are found from the

set of equations

n I(Sni) 0 (2.19)



/ _ _

The normalization coefficient 0ni is found by computing

8ni - 1 (2.20)

ni as asni ni

Using these equations, an SEN data base was constructed for a straight wire

with an aspect ratio (diameter/length) of .01. It was found convenient to

use 64 zones for the MoM equations. The resulting data agrees with the

results reported by Tesche (9].

The SEM poles for the wire fall in layers in the left-hand s-plane,

indicated in Figure 8. Poles are indexed by (m,n), where m is the layer and

n is the pole, numbered sequentially by distance from the aL axis, where C is
irc

the speed of light. Layer one consists of those poles closest to the jo

axis, layer two of the next closest, etc. Reference to this layer scheme of

ordering poles will be made frequently.

2.4.2 Circular Loop Data

The SEM loop data is an ioportant complement to the numerical data

derived for the wire, in so much as the electric field integral equation for

the loop can be approximately solved analytically due to symmetry by expand-

ing the current into a Fourier series, as done by Wu [10]. Also the loop

represents a doubly-connected object, as opposed to the singly-connected

wire, and the difference in the SEM representation of the admittance for

these two objects can be investigated. Namely the wire evidences zero admit-

tance as s l 0 while the loop admittance does not. Due to the analytical

tractability of the loop integral equation it is possible to identify and

group the poles by eigenmodes, which will be useful when the investigation

of eigenadmittances Is made in Chapter III.

IL
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The SEM current expansion given by Umashankar [11], based on Wu's

results, is

Vo(s) a1 -jn,
0(,s) E - E e , (2.21)

n i ni

where n is the index over modes and i the index over poles in a mode and n is

the free space impedance. V(s) is the transform of the input waveform. The

modal currents are of the form e-jn . Equation (2.21) is the representation

from which the gap admittance for the loop is derived. Figure 9 gives the

loop geometry.

When discussing the poles of an eigenmode for the loop, Wilton and

his co-workers break the poles into three groups [11,12], and this practice

will be followed here. Figure 10 shows this classification. The type I pole

for a mode is that pole which lies closest to the jw axis. Type II poles, of

which there are a finite number, lie in a semicircular arc veering towards

the negative real axis. Type III poles, which are infinite in number for a

mode, lie along the jw axis. The SEM data for the loop used in this study

was computed by Blackburn [12], and has been fully corroborated by Umashankar

[11].

Fi
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CHAPTER III

POSITIVE REAL CONSIDERATIONS

3.1 Introduction

In this chapter the three different modules (pole-at-a-time, pole-

pair, and terminal eigenadmittance) used to construct the equivalent admit-

tance circuits are examined to determine their PRness and hence their

realizability. Admittance modules from both the straight wire and circular

loop are examined. Parameter tests for PRness, as defined in Chapter I, are

constructed and used extensively. Also, the admittances of some modules are

studied by graphs depicting the real part along the jw axis. The question

of the effect of numerical errors on the PRness of modules is addressed.

3.2 Pole-at-a-Time Circuits

Ideally, it would be desirable if the admittance at the feed point

could be realized by constructing individual circuit modules on a pole at a

time basis, as illustrated in Figure 5. A consideration of the individual

modules in detail shows that such a realization is untenable. The admittance

of an unmodified module in SE1{ terms is given by

ai (3.1)n s = (s - s ni)

This is recognizable as an RL series circuit, with the values of the inductor

and resistor given by

1 (3.2)ani

- 26 -
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and

tR = - i (3.3)
ani

However, since the SEM data consists generally of complex poles and residues,

then the L and R elements take on complex values, and are hence unrealizable.

Only in the case where a SEM pole lies on the negative real axis is the cir-

cuit realizable.

A consideration of the modified pole at a time circuit module

reveals the same situation. Here we have

ai a nia n5
Yni(s) - s - S-ni S ni S ni(s -S (34)

The general complex form of the residue guarantees unrealizability.

Given that some SEM poles lie near the jw axis, the question might

be asked: Will the imaginary parts of the circuit elements, in either modi-

fied or unmodified form, be negligible? Taking the pole which is closest to

the Jw axis for the wire, for the center-driven case we obtain the following

values:

Unmodified Modified

L - 833.61 - J233.97 C -- 1.36 xl0- 3 - jl.32 x10-4

R - 146.39 + J782.47 R - 146.39 + j782.47

We can see from this example that the imaginary parts are not negligible.

3.3 ConJugate Pole-Pair Modules

From the results in Section 3.2, we see that for realization of a

circuit, it is necessary to have real coefficients for the powers of s in Y .

1hi
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This can be done by combining conjugate pole-pairs into one module. For SEM

data, this is done as follows for the unmodified case

a*
a ni (3.5)

where * indicates conjugation. Simplifying, we have

2 Real(ani)s - 2 Real 1(a n5 n51
(s) 2(3.6)ni 8 2 - 2 Real(sni )s +' Is nil 2

Similarly for the modified case we have

2 Real(anS* )s2 - 2 Real(a*i(si ) 2)s (

ni Isni12(s 2 - 2 Real(s ni)s + Isni 12)

We see that in both cases the coefficients of s are real. In addition, all

coefficients in the denominators are positive, since all poles lie in the

left-hand part of the complex plane.

In the Introduction, the conditions placed on the residues for the

unmodified admittance of Equation (3.6) to be a PR function are given. The

conditions for the modified admittance to be PR are derived in the following

paragraphs.

Rewrite Equation (3.7) as

dls + ds
(s) 

(3.8)
bls2 + b2s + b3

where
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d 1 .2 Real(a iai) b1 " Is.,,

d2 - -2 Rea1(a*(sv )2) b2 -- 21snil 2 Real(sni)

b3 - ISni1

Then the real part of Y(s) at s - jw is

4 2
dlbe4 + (d 2b2 - dlb 2

Real Y(s) 2 4 2 bb 3)2 2 (3.9)
b1 W + (b 2  1 l 3 )W +b 3

Because the denominator formed in this way is the square of an absolute

value, it is always positive. Thus the question of Y(s) being positive real

devolves to

dl ble4 + (d 2 b 2 - dlb3 )W2 a 0 for w Z 0 .(3.10)

Setting the first derivative of this function to zero to find the extrema

yields such a point at w - 0. Since this point must be a minimum for a PR

function, evaluating the second derivative at w - 0 yields the first, low

frequency, PR condition

2(d 2 b2 - dlb3 ) 0 . (3.11)

The other PR condition is obtained from observing that Equation (3.10), to be

* 4PR at high frequency, must have a nonnegative coefficient for the w term.

This yields the condition

dlbI - 0 . (3.12)

km
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These conditions are seen to be necessary and sufficient for Equation (3.7)

to be PR. Translating the coefficients of these two conditions into the pole

and residue terms, where ant - ti + JBni and s a ni + jWni' we get
~~~ni ni in jwwge

21s ni 2 (L ni ni + Bniwni) _ 0 (3.13)

and

41 2  a (2 3 2 1) + Bniw (3a2 2 a) 0 (3.14)t ' i[nni ni igh - ni -i

Equation (3.13) is called the high frequency parameter test for

modified pole-pair admittances and (3.14) is the low frequency parameter

test, also for modified pole-pair admittances. Both of these tests must be

met (i.e., a 0) for the modified pole-pair admittance to be PR. The parame-

ter test for unmodified pole-pair admittances is derived in Chapter I and

repeated here as

-ani - I'nilWni a 0 . (3.15)

For convenience we name Equation (3.15) parameter test I, the low frequency

condition of Equation (3.14) parameter test IIA, and the high frequency con-

dition of Equation (3.13) parameter test IIB.

The usefulness of these tests is illustrated in Figures 11 through

15. These figures display the parameter tests for both modified and unmodi-

fied pole-pair admittances for the first five poles of the first layer of the

straight wire, and illustrate how the values of the tests vary as a function

of the gap location on the wire. The solid line is the parameter test for

unmodified pole-pair admittances and the dashed lines are for the modified

admittances. PR regions for both admittance forms are marked by shading.
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The x-axis is the normalized distance from one end of the antenna, and the

y-axis is the value of the parameter tests. For the equivalent circuit corre-

sponding to a particular feed location to be realizable on a pole-by-pole

basis, the pole-pair admittance for each pole-pair must be PR.

Note that for these first layer poles, which are the primary con-

tributors to the circuit admittance due to their proximity to the jw axis,

only the important case of pole 1 seems to be PR (in modified form) over a

wide region of the wire. Also note that in no case for the first layer poles

is the unmodified form of the admittance realizable, and for the modified

form, apart from pole 1, only isolated spots on the antenna appear PR.

Figures 16 through 19 indicate the parameter tests for the first three pole-

pair admittances of the second layer which lie off the real axis, and the

second pole-pair admittance of the third layer.

These graphs indicate only a qualitative measure of positive real-

ness, however. If we look at the real part of the modified conjugate poJ -

pairs directly, greater insight into the realizability is available. Figures

20 through 27 display the real part of the modified admittance along the jw

axis for the first five poles of the first layer for the center and quarter

locations of the wire. Figures 28 through 32 show the real part of the pole-

pair admittances of the second layer poles.

In these graphs the solid line indicates the modified pole-pair

admittance real part. The dashed line indicates the amount of shift between

the modified and unmodified admittance. In other words, the dashed lines

indicate the zero axis for the modified form. Several facts can be observed

from these graphs. The first layer poles are the primary contributors to the

admittance, as their peaks are 25 to 100 times greater than the peaks of the



-37-

0 I4

-- ,

IA 0
0

4.4

I4 c

-F -

'.4

-4-,

to t

1111111 1111ON

InI

3flWA .Ls3i b3i3wNv'd



-38-

00

till 4-4K' / m
I I1

I 'w

--- *1---4J

I 0
I~~mrmmmJ

3niv is~ H~iwv~6



-39-

01

4~$ tw~

00

H0 E

CC.

iUm

IV IS1bl3I



-40-

0

0.0.00 OD GiI e4

00

41 I

0 0

Inm IS3i_ H11VV~



V -41

Ii 03

I0 0 4
I- itI

I- $40-

I- II
1.- Y 04.) w

4.) wJ 09

II~F C- -4 4~$

I I ~ -

(904W1) 30NVI.LIWCIV

I-L4



-42-

41

P4 -A

r-4 ".)

r-4 4
01

4) 04 41
0 4 0

3: 04

LA41

4 .cC%

W q P 4 0%-

4 ) (L)

0 4 1 w
Eu11

41
.4

".4

(204W~) 3ONV.L)WO3V



~ 11 -43-

0-t

.1 4I
.C 

%-4 
.

.4.

4a-) '

'.4 C )

CO~~ 0-q0 c
c;U

(S04N) 3NVIIV40]



*1 -44-

I4 4
040

I0 04 >

-, 0UI3 Iw I 0

$4'

IC4
'44

I I. I 5

--- H-- ---(604M)--- 3OVIII03



-45-4

I I 0

4 _ ___

.!1 0"

'i I I II

I IIi I0i - •

MO $4.,

I I -H

T 0

4m

- ,.) cc

Au ip IV .- a Im .- C I-

I N.

O0

(Ioq~%_ in -)1.-4le(]

-4J >

CN

in 0n In to

00 W
0 0 c; o o

(904 A) 30N VI.I WCV



-46-

I I II-

I I I I-
>1

I m

I I I ,m
7,--t -,to,;j 0

I I I

1 "1I. 0. 0

I pI.=

II I ' )

0w40>

0 -

"I I I I I I I II I I I I I I .

-i - - I

~ M C

004W 30I II



/ -47- -

ii

SI I I
I (A

w -A

4 0I

IIII • I o --t ,I lI f 4J

I *d 4.

I t .i ,,I I

I '. I I I mli~I

- J I I! I -

00 1

oJJ

0

I0 0 I 0 If 0.-

60 I In IY .1 i

($0414) N 0I laV



-48-

-o4

I I 0

040 1

- - - 0

.0 Ln

-00
0-4

41 >

4CJ $4

E- 441

C01

In. to

(204W)30NV..LIWO



I; -49-

II -4

0 W
0 ~ d0

0 0

4.

I af

* 0

to Ov

(94W 3ONVIILWCJ



/

-50-

:14
-4o$

/I -

/3: 0

* II 0

N P-

I , .0

-4 4-

I0 ItId :
(94M 30NVILIWG



-51-

I. I - o,

a 0.- 0I - " o

I"4
II I

I I .

I I i 1 in

01
I II " I

I I I I ' o N
I Ii

I I i0
I I I00 .0

,,4

0~ 0 IN

II I I

0 0

.. 0.0

(904M) 30NV.JIIwaV



-52-j

lit
* f I I I

I I ' " 0 l
I I I I.=

:1 I I I -i
I I I -

I I I _ ,

i - "L

040

I i i !- -,

: °,4 W

! .. II I I_ .4

*I I LI i .Ljtf,"

II " I
I I 0

I t I -- - -- i° "
44

I II I

= 04

4

4 4J

x ~(1o004) 3O)NV,,IIIOV

I I ii I
. , -'



- 53-

0

54

I 0I i I '-4

g'IV
r 0

0 -* C
-1- 0I * I °  ofI 

co 3..

0N
N

4-4

0

• .4J

-01 4

I u

-4

x (9oqw) 30NVIIIINOV

L



-54-

more deeply embedded poles. The level shift due to the use of modified

admittances for first layer poles is positive, indicating that without modi-

fication these poles would all have substantial negative regions for frequen-

cies below the admittance peaks. All of the first layer poles except for

pole 1 at the 1/4 point are non-PR. This result, as well as the PR quality

of pole 1 at the 1/4 point, is predicted by the PR condition curves of the

last section. However, now we can see that the violation of PRness is small

in some cases, and consistently has the same character for first layer poles;

i.e., the negative portion occurs as a result of the low frequency violation

of the PR conditions and results in a small negative dip before the main peak

of each admittance. This behavior suggests two questions: 1) Is the small

negativeness attributable to numerical error?; and 2) If there are no numer-

ical errors, can the admittance still be realized with perhaps some negligible

negative components? It is shown subsequently that the answer to question 1

is "yes" only for a few isolated and predictable cases. The second of these

questions is addressed in Chapter IV.

It is worthwhile at this point to examine the PR character of the

conjugate pole-pair admittances formed for the circular loop. The type I

modified pole-pairs for modes one through five are shown in Figures 33 through

37. These poles are the major contributors to the overall admittance of the

loop. These admittances are quite similar in character to the first layer

pole-pair admittances for the wire. Except for mode 1, these admittances are

slightly non-PR, exhibiting a negative low frequency behavior. The loop,

unlike the straight wire, has a nonzero admittance at w - 0. This gives rise

to an SEM pole for the loop at s 0.

-...
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The character of the modified pole-pair admittances formed using

the type III poles of mode 2 are shown in Figure 38. Similar admittance

curves characterize all type III pole-pair admittances. The characteristics

are an initial positive value rising to a peak, which then falls to a nega-

tive peak and a negative final value as frequency goes to infinity. The

peak value for the first type III, mode 2 pole is 240 times lower than the

peak of the type I, mode 2 pole.

The modified pole-pair admittances for the type II poles of mode 2

are shown in Figures 39 and 40. The figure for the pole lying on the nega-

tive real axis is not a pole-pair, of course, but only a modified pole con-

struction. The peak admittance from this pole is some 130 times lower than

the type I pole of mode 2. The character of the type II pole lying closest

to the jw axis is entirely negative, with a peak value some 50 times lower

than the type I pole peak. This negative behavior is a characteristic of the

type II pole closest to the Jw axis, as Figure 41 indicates.

In summary, the following conclusions regarding pole-pair PRness

are established:

- For the straight wire

- Dominant layer 1 pole-pair admittances are non-PR in unmodified
form, exhibiting a negative value at zero frequency.

- Modified layer 1 pole-pair admittances are in general non-PR,
exhibiting only a very slight negative value in the low frequency
region. Exceptions occur at isolated locations on the wire for
all pole-pairs, and pole-pair 1 is PR over most of the antenna.

- Deeper embedded pole-pairs, which contribute much less to the
total admittance, are PR on various intervals, sometimes in modi-
fied form and other times unmodified.

- For the circular loop

- The dominant type I pole-pairs are non-PR in unmodified form,
exhibiting a negative value at zero frequency.
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- Modified type I pole-pairs are in general non-PR, exhibiting a
slight negative value in the low frequency region. An exception
is the pole-pair of mode 1, which is PR.

- Type II pole-pairs, which contribute much less to the total
admittance than do type 1, exhibit a range of PRness. The type
II pole-pair closest to the jw area is non-PR in unmodified or
modified form, and the pole admittance (not a pole-pair) which
lies on the -a axis is PR. Other type II pole-pairs are not PR
in either form.

- Type III pole-pairs, which also have small contributions to the
total admittance, are non-PR in modified or unmodified form.

3.4 Eiaenode PR Considerations

When the synthesis of equivalent circuits is carried out on a ter-

minal eigenadmittance basis, the theory of the eigenmode expansion provides

some very useful insights into the problem of finding PR functions. First we

note that the inverse eigenvalues )-l(s) are positive real functions, as they
n

derive from an impedance integral equation for a passive object [6]. The

PRness of the inverse eigenvalues Xn (s), which are termed eigenadmittances

by Baum (4], has been demonstrated by Wilton [13]. This proof is reproduced

in the Appendix for the sake of completeness. However, the PRness of these

eigenvalues does not insure the PRness of the associated terminal eigenadmit-

tances of Equation (2.13), as we demonstrate in the Appendix. Additionally,

the construction of terminal eigenadmittances depends on the availability of

the eiaenmode groupings of poles, For analytically tractable objects, such

as the loop or sphere, such groupings are available; however, for objects

such as the wire, where the poles are found numerically, the task of grouping

the poles by eigenmodes is much more difficult. For a complex object where

the poles are experimentally . ived, if at all, complete grouping information

is not likely to be available.

Wilton and his colleagues [13] have derived eigenmode groups of

poles for the wire on a numerical basis. They have used these groupings as
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the basis of conjecture for the general grouping schema indicated in Figure

42. Note that there are only a finite number of poles belonging to each

eigenmode in this representation. The circular loop manifests an infinite

number of poles associated with each eigenmode.

In the case of an infinite number of poles per eigenmode, the

question arises as to whether all poles are necessary for PRness and, if not,

how many poles must be included to have a PR function. In the case of mode 1,

where the type I pole-pair forms a PR modified admittance by itself, inclu-

sion of the type II pole of this mode destroyed this PR character in the low

frequency region, although the maximum negative value is only -. 5x10 - 8 mhos,

compared to the positive peak value of 7.5x10 - 3 mhos. The systematic addition

of type III poles reduced the maximum negative value, and pushed the fre-

quency at which this maximum occurred closer to zero until, with the inclu-

sion of four type III poles, the admittance was again PR. The inclusion of

these poles is found to have little effect on the appearance of the admit-

tance when compared to the type I pole-pair admittance, except for introduc-

ing som small high frequency variations due to the type III poles. The peak

admittance value of the eigenmode grouping has been lowered by some .75 per-

cent.

An interesting feature is observed when the eigenadmittance group-

ing is performed. As more type III poles are included, the difference between

the modified and unmodified forms becomes smaller, and in the limit would

appear to give the same admittance. In other words, the constant terms intro-

duced into the modified form sum to zero for a given eigenmode.

A similar examination of mode 3 where the type I pole is not PR

revealed the sam behavior as that for mode 1. Increasing the number of
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type III poles systematically reduces the negative portion of the admittance.

However, inclusion of all seven type III poles available did not produce a PR

result, although the maximum negative value was reduced to only -.25x10 . For

higher modes a similar result also holds. In general, to make an eigenadmit-

tance PR requires the inclusion of many type III poles, making the circuit

realization more complex, since the additional poles entail more circuit

elements.

It is worthwhile to point out that if the problem at hand were

merely to synthesize the total admittance of the wire or loop using SEM data,

then the PR character of the admittance is assured. The mathematical reason-

ing leading to this conclusion is as follows. If the pole of the lowest

frequency for the structure is PR or can be made PR, then when all the poles

for the structure are grouped the low frequency non-PR character of the

higher poles are negated by the large positive peaks of the lower poles.

However, to include simple Norton generators in the synthesis, it is neces-

sary to try to realize the admittance by some group of recognizable modules.

Further, it is desirable that these modules be as simple as possible.

When the terminal eigenadmittances for the straight wire are con-

sidered, the results are found to be ambiguous. For eigenadmittance group-

ings using conjugate pole-pairs at the center of the wire, the results are

PR, as indicated in Figures 43 and 44. However, when such groupings are

attempted for a terminal taken at the quarter point of the wire, some non-PR

results are discovered. These groupings are indicated in Figures 45 through

49. The postulated eigenmode groupings for eigenmodes 2, 3, 4, and 6 are

ams-PR, and in the case of modes 3 and 6 the negative part is not negligible.

ThiL result could have been foreseen by reference to the parameter test
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results. Taking the case of mode 3, poles 3 in the first layer and 2 in the

second layer, we see from the PR condition graphs that at the quarter point

for these poles the PR conditions for the modified admittance form is vio-

lated for both poles. Since the real part of each pole adds algebraically

to produce the total real part admittance, then the grouping of non-PR poles

cannot produce a PR result. Similarly the unmodified admittance formed by

grouping these two poles is non-PR.

While the discussion in the Appendix indicates that the terminal

eigenadmittances are not demonstratively PR, it is interesting to speculate

as to alternative reasons for the non-PR result. That numerical errors in

pole/residue data is the source of departure from PRness is unlikely in

light of the general error analysis discussed in the next section. Other

possibilities include improper groupings of poles associated with the eigen-

values and missing components of the Mittag-Leffler expansioi. of the eigen-

values. Wilton's groupings are based on similarity of modal features and

the topological kinship of the straight wire to the sphere. We are inclined

to trust Wilton's conjectured groupings. Therefore it is difficult to draw

more specific conclusions at the present time.

3.5 SEM Pole/Residue Error Effects on PR Considerations

The SEM data for the wire is numerically derived. This gives rise

to the question as to how strongly numerical errors influence the PRness of

the admittances derived from this data. This is especially important in

light of the very small negative values encountered in the modified conjugate

pole-pair admittances for first layer poles. We have elected to investi-

gate this question in terms of the parameter tests given in Section 3.2.

Errors in the real and imaginary parts of both the poles and the residues

were introduced, and new parameter test curves were produced. In such a way
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the sensitivity of these conditions to errors in the poles and residues can

be observed. The study is centered on errors in the real part of the pole.

The real part of a numerically derived pole is generally less trustworthy

than the imaginary part.

Results for pole 1 of the wire are given in Figures 50 and 51. In

these curves, the solid line is the original value, and the dashed lines

indicate the changed values. Figure 50a shows the effect of a +5 percent

change in the pole real part on the high frequency condition for pole 1. The
4I

change in this condition is very slight. Figures 50b through 50d indicate

the effect of changing the other parameters by 5 percent. The largest change,

of some 30 percent, occurs when the imaginary part of the pole is changed.

Since this parameter is accurately known (within 2 percent) in the numerical

data, this is not bothersome. Note that in none of these graphs is the basic

character of the condition changed; that is, the shape remains the same and

the condition remains positive.

An entirely different situation occurs when we modify the parame-

ters by 5 percent for the low frequency test. These effects are illustrated

in Figures 51a and 51b. In Figure 51a, a change of +5 percent in the real

part of the pole results in an entirely positive condition. This change

corresponds to forcing the real part of the pole slightly away from the Jw

axis. The remaining figures indicate a similar occurrence when the imaginary

part of the pole is forced towards the real axis, when the imaginary part of

the residue is forced towards the real axis, and when the real part of the

residue is forced away from the Jw axis.

The real part of this pole is modified to produce a PR function,

both to study the effect on the admittance and for latter use in circuits.

Li L
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Because an error of +5 percent for the real part of the pole is within the

computational uncertainty of the data, a value of this pole with a real part

changed by 3.5 percent is used, which allows the modified form of this admit-

tance to be PR over the entire wire. When this is done, it is found that the

peak value of the modified admittance formed from this pole decreases by 3

percent over the original value.

In light of these results for pole 1, the other poles were studied

in the hope of producing PR results for the entire wire with adjustments in

the pole value within the limit of numerical error. It was found however

that all the other poles retained the essential characteristics of the non-PR

conditions under as high an error as 10 percent. Figures 52 through 57 indi-

cate these results for poles 2 and 3 for the first layer, and pole 2 of the

second.

The conclusion to be reached is that the small negative low fre-

quency admittance values found when forming modified conjugate pole-pair

admittances are not attributable to any small numerical errors in either the

poles or residues, but are inherent properties of these admittances. The

important exception is pole 1 in the first layer. It was found that when

large changes in the poles or residues were made in an attempt to make these

pole-pair admittances PR, the peak value of the admittance, which we know to

be accurate through comparison with integral equation admittance results, is

changed substantially. Hence means other than parameter modification or

approximation must be used to realize these admittances.
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CHAPTER IV

CIRCUIT SYNTHESIS

4.1 Introduction

This chapter addresses the construction of equivalent admittance

circuits for three objects - the center-driven wire, the quarter-driven wire,

and the circular loop. The circuits derived are physically realizable; that

is, they are composed only of passive resistor, inductor, and capacitor

elements. The circuits are composed of terminal eigenadmittance modules

whenever possible. However, when terminal eigenadmittances are not PR, two

other methods are used to create equivalent circuits. In the first, a method

is devised by which an admittance having a negligible non-PR region can be

made PR. In the second, poles are regrouped to produce a PR result. The

response of these circuits to a transient voltage at the port are compared to

the response of the original object to the same voltage. A study of the sen-

sitivity of these circuits to element variations is also made.

4.2 Center-Driven Wire

Two equivalent circuits are constructed. The first is composed of

terminal eigenadmittances, and the senond employs first layer pole-pair admit-

tances only. To construct this second circuit, a method is given by which

the small non-PRness of these admittances can be neglected. The responses of

both circuits are investigated.

4.2.1 Terminal Eigenadmittance Results

The PR results from Chapter III, which indicate that the summation

of poles along the eigenmodes postulated in Figure 42 are PR and hence

- 87 -
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physically realizable, are used as a basis to construct an equivalent circuit

for the center-driven wire. The procedure followed is to construct the

rational polynomial formed by the suning of those poles in an eigenmode and

their conjugates, and then use standard circuit synthesis techniques to

derive the equivalent circuits. The circuit synthesis is done by reducing

the polynomial to a minimum conductance - minimum reactance form, and then

applying the Bott-Duffin technique. Although a complete representation for

the eigenmode grouping is available for only the first six eigenmodes, we

chose to include mode seven, although the data base for this mode lacked one

pole in the fourth layer, since it was PR without this pole. The poles and

residues used are listed in Table 1. Figure 58 gives the result of this

synthesis, and Table 2 lists the element values. The reactive componentsLL
are normalized by L_. The real part of pole 1 is biased upward by 3.5 per-

cent of the peak value, as indicated in Chapter III, to make it PR. Because

only modes which possess current distributions which are even functions

couple at the center of the antenna, eigenmodes one, three, five, and seven

are realized. Table 2 also gives the actual circuit element values needed to

realize the center-driven admittance of a 100-meter wire. This length was

chosen because it gives element values which are in the picofarad, microhenry

range. These values change proportionally to length, so that only a certain

range of sizes for the wire may actually be realizable. This scaling of

inductors and capacitors is frequency scaling, with the scaling factor equal

LL
to -L . Hence both capacitors and inductors increase with increasing length.

hk
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Table 1

Poles and Residues Used for Eigenmode Synthesis,

Center-Fed Cylindrical Antenna

Mode Poles Residues

1 -.08427+j. 9158 .1112xlO 2+j. 3121xl - 3

3 -.14 73+J2.870 .1319x0" 2+j.3301xi0-3

-2.491+J 1. 328 .0988xlO-3+j.2529xl0- 3

5 -.1877+J4.834 .1423x10 2+J.3521xi0 -3

-2. 894+j 3.528 ,1408xlO"3+J. 1850x10- 3

I -4.517+jl.497 .3218xlO'+J.2378x10 3

7 -.2177+j6.792 .1496xlO 2+j. 3699x10- 3

-3.1404-j5.600 ,1647xlO 3+j.1687x10- 3

-5.069+j3.890 .6818x10-4+j .1628xi0-3

Poles are normalized as per Tesche [9]
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Table 2

!L

Element Values Normalized to -__ for Center-Driven Wire Admittance,wc

Realized on a Terminal Eigenadmittance Basis

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

1 Rll .663 .663

R12 2200.6 2200.6

C11  2.72xi0-3  288.6x10-12

L 1 434.55 46.llxl0- 6

2R31 29.76 29.76

R 4280. 4280.R32
R33 571.4 571.4

R 53.07 53.0734
R35  397.4 397.4

L 290.3 30.80x10-6

L 3817. 405.xl0- 6

L 141.2 14.98x10 6

336
L34 18.45 1.958x0 "6

C31  3.649xl1-4  38.72x10l12

C32  8.126xlO 5  8.622x10 1 2

C33  1.681x10 2  1784xl - 2

C3 4  1.278xl0- 4 135.6x10- 12

C35  6.218x10 65.98x10 -12

35
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Table 2 (continued)

100 Meter AntennaMoide Element Normalized Value (ohms, farads, henries)

5 R5 1  50.69 50.69
R52  5228 5228
I R53 1003 1003

R5 4  2829 2829
R5 5  947.2 947.2

R56 137.9 137.9

R57 718.5 718.5
R58 761.1 761.1 i
R5 9  254.9 254.9

C 5 1  1.539xl10 4  16.33xio 12
C5 2  3.926x1075  4.166xi0-12

C5 3  7.068x10-5  7.499x10-1 2

C54  3.362x10- 4  35.67x10-12

C55  2.52xl0-3 267.4x10-12

C5 6  2.608x10 4  27.67x10-12
C5 7  1.738xl0-  18.44xi012

L51 242.4 25.72x1o-6

L 52  1817. 192.8x10-6

L5 3  188. 19.95x10"6
L54  125.3 13.29x10-6

L55  28.3 3.003x10-6
L56  50.96 5.407xi0-6

IJ
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* ITable 2 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

7 R53.02 53.02

~725967 5967

R 2500 2500
73

R7 4  1682 1682

R 7 5  3611 3611

R 6106.5 106.5

P-7 7  254.1 254.1

R 78377.7 377.7

R 9175.9 175.9

C 7 1  8.368xlO-5 8.879xl1012

C 7 2  2.427xlO- 2.575x10-12

C 7 3  2.285x10- 2.424xl1012

C 74  3.62x10 - 38.41x10 12
C 7 5  2.161x10 - 229.3x10'-2

C 76  4.982xl10- 52.86x10 12
C 77  1.129x10O 119.8x10'

L 7 1  230. 24.40x10-1 6

L 7 2  1373 145.7x10-6

L 7 3  316.5 33.58x10 6

L 4717. 76.08x10-6

L 75  15.42 1.636x10-6

L 76 14.52 1.541xl106
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4.2.2 Pole-Pair Realization Using First Layer Poles

Although the previous section gives a practical circuit for the

admittance of a center-driven wire, several factors limit its use. An eigen-

mode synthesis for modes higher than seven requires the SE24 poles lying in the

fifth and higher layers. Such poles are very hard to extract, and to date

have not been extracted. This would result in a band limitation on the cir-

cuit if the higher modes are not represented. Also, as more modes are

included in the representation more poles per mode are needed for realiza-

tion, which leads to more circuit elements per mode.

For these reasons and because poles other than first layer appear

to contribute negligibly to the total admittance, a circuit using only first

layer pole-pair admittances is constructed. In light of the very small non-

PR values associated with the first layer poles, it is reasonable to assume

that some realization yields a circuit which includes some small, negligible

negative elements.

The following observation in regard to the Bott-Duffin synthesis

provided the necessary insight for approximate realization of the circuit.

Suppose a negative conductance GN, equal to the maximum negative value of a

modified pole-pair admittance, is removed from the admittance. The result-

ing admittance is PR, since its real part has been raised by a level equal to

the absolute value of %. If a Bott-Duffin synthesis is then performed on

this PR admittance, the circuit module given in Figure 59 results.

Here YC and YL are functions obtained in the Bott-Duffin synthesis

and are subsequently synthesized by the removal of a conjugate pole. The

module is seen to consist of three branches: a shunt conductance, a capaci-

tive branch, and an inductive branch. Since the overall admittance of this
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module at w - 0 is zero, then the admittance real part of YL' GL, must equal

G.. Furthermore, the conductance of the inductance branch is limited to a

maximum of GL, since the elements in the branch are in series with GL. ow

since

for the first layer poles, then

as well.

This demonstrates that only the capacitive branch need be included

in the synthesis and the other branches are negligible. This realization has

the correct behavior at zero frequency, and has the proper pole at the proper

peak value. The peak value does not differ from the original because, at the

pole, the inductive branch contributes admittance %, while the resistor con-

tributes -%. Only the final value of the admittance would differ from the

original pole-pair admittance, and this is negligible.

This scheme is used to synthesize an equivalent circuit using only

first layer poles for the center-driven wire. The resulting circuit is given

in Figure 60, and a table of circuit element values given in Table 3.

I!

i
|[
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Table 3

Element Values for Center-Driven Wire Equivalent Circuit

Realized by First Layer Pole-Pair Admittances

I.a

100 Meter Antenna Ia
Pole Element Normalized Value (ohms, farads, henries)

R .663 .663 L

R 2200.6 2200.6

C11  2.72x10-3  288.6xlO-12 1.

L1 l 434.55 46.llxlO-6

3R21 4958.7 4958.7 1.
C21  4.728xi0 -  50.17x1012

C22  1.063x10- 3  112.8x10-12

L 368.22 39.07x10-6

5 R 6513.5 6513.5

C31  2.253xi0 -4  23.9xi0-12

C32  2.787xi0 -4  29.57xi0 -12

L31 341.4 36.22xi0-6  1

7 R41 7542.3 7542.3

C41  1.418x0 -4  15.05x1012

C42 1.249xl0 4  13.25xl0 12

L41  324.6 34.44x10 6

k H
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Table 3 (continued)

100 Meter Antenna
Pole Element Normalized Value (ohms, farads, henries)

9 R51  8374.8 8374.8

i 51  l.OllXl0× - 4  10.73x10- 12

C52  7.124xl0 5  7.559x1012

L5 I 311.91 33.09xlO-6

* 4.2.3 Circuit Performance

The transient current response at the port of the circuits is ana-

lyzed by means of a SCEPTRE circuit analysis program implemented on an IBM

370 computer. The circuit is excited at the port by a Gaussian pulse of the

form
2

V(t) - e- ( AN (t - TMAX)) (5.3)

where AN - 3.25x10 7 and TMAX - 60.802xi0- 9 seconds. These results are then

compared to results from the thin wire time domain (TWTD) program for a similar

wire. Figure 61 illustrates these results for the eigenadmittance circuit,

and Figure 62 illustrates the results for the first layer circuit synthesis.

The response for the two circuits is almost identical. The eigen-

admittance circuit shows more oscillatory behavior but this is due to the

truncation of the modes at mode seven. For late times the response is very

close to the TWTD response. Note that both circuits miss the early time,
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or forced, response. This ind1Lcates that the representation for the wire is

not complete. A study was made to attempt to discover what was missing to

cause this early time response error. If we observe that the wire is a

capacitive object, then it can be theorized that the SEN representation of

the admittance should include a shunt capacitor across the port. Such a

capacitor would correspond to a pole at infinity. It can be demonstrated

that the response of such a capacitor would be such that it would give the

correct forced response and not affect the late time. The current response

of a capacitor is given by

dv

i(t) - c t (5.5)

If the forcing function is a Gaussian pulse then the current contributed by

the shunt capacitor is given by

i(t) - C e - ( AN (t ' TMAX)) 2 2(AN(t - TMAX)) . (5.6)

Such a shunt capacitor can be viewed as a lumping of the static capacitances

associated with an infinite number of poles neglected in the synthesis. This

conjecture is supported by work done by Franceschetti [14) on the quasi-

static capacitance of spheroidal antennas.

4.3 Quarter-Driven Wire

In the last chapter we showed that some of the terminal eigenadmit-

tances for this structure are non-PR. Thus an alternate means of realizing the

equivalent circuit is employed here. In order to perform the synthesis at this
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feed point, we resorted to an ad hoc grouping of poles so as to achieve PR

"pole group" admittances. The groups used are as follows:

Group 1

pole 1, first layer

Group 2

pole 2, first layer

pole .1, second layer

Group 3

pole 3, first layer

pole 2, second layer

pole 1, third layer

Group 4

pole 5, first layer

Group 5

pole 6, first layer

pole 7, second layer

pole 1, fourth layer

Group 6

pole 7, first layer

pole 8, second layer

pole 4, third layer

Group 7

pole 9, first layer

* Group 8

pole 10, first layer

I-. pole 9, second layer

L pole 8, thIrd layer
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'1 Poles 4 and 8 of the first layer were not included, because of their negligi-

ble pole-pair admittances. Table 4 lists the values of the poles and residues

used.

Tab le 4

Poles and Residues Used for 1/4-Fed Synthesis of Cylindrical Antenna

'ad hoc' Group Poles Residues

1 -.08427+9J.9158 .6192xl10 3 +j.1619xl10 3

-3-

3 -.1473+j2.870 .5496xl10 3 +j.2259xl0 [3
-2.491+jl. 328 .1159x10 3 -J.1483xl10 3

-4.098+JO.O -.2497x10- +jO.0

4-.1877+j4.834 .9177xl0 J117l

6 -.2038+j5.81 920lO- +j .344x10-

7-.2256-j.76 .804x1- J.250

8 -.21773+j6.792 .5441641 314x10 -3j

-3. 363+j 8. 636 -.1079x1-2 +j.6414xl10
3 L

-5.638+j8.235 .2912xl& 2 +j.8177x10 3 T

Poles are normalized as per Tesche [9]

*Residue value unavailable[
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Figure 63 gives the circuit synthesized from the above groupings

using the Bott-Duffin procedure. Table 5 gives the element values. The cir-

cuit was analyzed with the SCEPTRE program, using the same Gaussian pulse as

in the previous example, and a comparison with results computed by TWTD was

made. Figure 64 illustrates this comparison. The circuit response exhibited

(when compared to TWTD) oscillations of relatively high magnitude. These

oscillations cause the signal to be degraded in late time. However, the gen-

eral shape was replicated. The early time response shows the same departure

from TWTD as did the center-driven wire. There are two possible sources of

the oscillations. One is an incorrect element value in one of the modules.

The other more likely possibility is an error in the SEM poles, partic-

ularly in the higher frequency, deeply embedded ones.

4.4 Admittance Synthesis for Circular Loop

As stated in Chapter III, there are an infinite number of poles in

an eigenmode of the circular loop. Therefore, a terminal eigenadmittance

module has an infinite number of elements and is unrealizable in a practical

sense. By truncating the set of eigenmode poles, a truncated terminal eigen-

admittance module can be constructed. Two problems remain, however. First,

the truncation may not result in a PR admittance, in which case the modified

Bott-Duffin procedure of Section 4.2.2 must be used. Namely, the admittance

is made PR by removing a negative conductance, and then neglecting this con-

ductance branch and the inductance branch in the subsequent Bott-Duffin

synthesis. Second, even if the truncated admittance is PR, the complexity of

the Bott-Duffin circuit grows quickly with pole count. The number of elements

Nrequired for a Bott-Duffin synthesis grows by 7x2 -6, where N is the number of

pole-pairs. Thus an admittance composed of 4 pole-pairs requires 106 elements.

L-L-A



- 106 -

I I Ii1~
S 6

.;~ S~ <v~ I

S S
5 C -~

C

5

(.3

:4 w
J-I

(U

0I

I,.'

25 S.d
0- U C C,

* * g* C 2 I 4J

U C 'C -
* C aU -. C C - U

* 5
-4

U U

S C U

U)
0

'.0

0)
'Cd

00

a

a a -

.2

1.



-107-

Table 5

Element Values for Pole Groupings of Quarter-Driven Antenna

Pole 100 Meter Antenna

Group Element Normalized Value (ohms, farads, henries)

R 7.427 7.427
11

'R24311.9 4311.9

C 1  1.5l40O 160.2x101

L 1782.3 83x10_6

2 R2  2234.4 2234.4

R22 3.405 3.405

R23  .752 .752

c 18.003X10-
4  84. 91x10l12

C 2 1  2.288xl104 24.28xl1012

C 23  1.787410-18.6l9

C 24  1.026x10 1  108.9l0-

L 1300.5 31.88xl106

L 217256. 1.83 x0-3

L 23  .3846 40.81xl0-9

3 R 1 36.13 36.13

R 25806. 5806.

R33 4677 4677

R134 1597 1597

R3 1042 1042

R3 355.6 355.6

R 7286.5 286.5
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

C31 1.843x10- 5 19.56x10- 1 2

C32  6.606xQ -  7.009xl0 1 2

32 -5-12
C3 3  3.2410-  3.438x10

C 34 3.174x10- 4  33.68x10-12

C3 5  1.634x10 - 4  17.34x10- 1 2

C3 6  2.007x10- 3  213.0x10- 12

L 527.9 56.02x10- 6

L31 3339 354.2x10- 6

L32 271.8 28.84x10-6

L 107.9 11.66x10- 6

L35 53.9 5.719x0 -6

4 Does not couple

5 R51 1.418 1.418

R5 2  32510. 32510.

C51 7.893x10-6 837.5x10-12

L51 541.3 57.43xi0- 6

6 R61 65.91 65.91

R6 2  17640. 17640.

R63 38400. 38400.

R64 32450. 32450.

R65  258.3 258.3

R66 118.7 118.7

R67 140.4 140.4
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

6 61  1.182x1&4  12.54x101 2

C 62  1.258xl15 .1.335 x10-12

C6  1.790x106  1899X10 1

C 64  4.909x10O 5.209x101
C 65  7.124x1&-4  75.58x10-12

C 66  2.471l104 26.22x10-12

L 61  223.7 23.74x10-6

L 23246. 344.4x10 6

L 31126. 119.5x10-6

L 64  57.33 6.083x10-6

L 58.156 .8654xl106

7 R 71  108.3 108.3

R 22615. 2615.

R 3708. 708.

R 74  65.4 65.4

R 531.12 31.12

R 6336.9 336.9

R 77  2661. 2661.
R 78  28810. 28810.

R 9720.5 720.5

R 710  60540 60540

R715592. 5592.
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

7 C 1  9.245x10O 9.8094012

C 72  l.065lO~ 11.34012

Z7 3 2.084xl10 4  22.1140 -1

C7 3.532x10 374.840 1

07 l.642x102 1743x101

0 75 3.355l0k- 35.6xl0 -12

0 76 8.445xl0 - 8.96140O 12

C 78 1.277l0 - 13.55xl0 -2

C 78 4.131l0 - 4.383xl1012

S710 1.921XI10- 20. 38xl1012

C 7 10 3.924x10-6  .416340O12

7-12

L 71159.1 16.88x10 6

L 2240.6 25.52x10 6
L 73  77.82 8.257l0 6

L 4361.9 38.39x10 6
L 7 5  7.392 .7 843x10 6

L 76  4.592 .4872x10 6
L 7200.6 21.28x106

.78392.6 41.66l0 6

L 96654. 706.040O 6

L7030940. 3.283lQ -

L71632.0 67.06l06

8 Does not couple
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohlis,, farads, henries)

9 64.38 64.38
R91
R 9 102300. 102300.

S 91  2.819x0 "  2.991xi012

L 464.2 49.26xi0-
6

10 RI 5.875 5.875

Rio z  3920. 3920.

R 10 3  4209. 4209.

R10 4  1610.0 1610.

R10 5  694.0 694.

R1 0 6  646.3 646.3

R1O7  84.55 84.55

R 108 801.50. 80150.

R1 0 9  32.170. 12 1 70

R 1690. 1690.

R1011 33.94 33.94

C10 1  6.284x0 -  6.6680 -12

C10 2  2.14x0 - 1 2.275xl0 - 12

C10 3  5.458xi0 -I  5.791xi0 -1 2

C10 4  4.066x0 -5  4.3140 "12

C10 5  2.147xi0 - 5  2.278xi0 - 12

C10 6  2.418x10- 4  25.66xl0-12

C10 7  5.348x10- 5  5.674×10-12

C10 8  1. 013x10- 4  10.75xi0- 12

C10 9  1.359xl0 4  14.42xi0- 12

C1 01 0  4.989xi0- 5  5.294xi0-12

C1 01 1  7.346x10-4  77.94x10 -12

1. Cl0 1 2  I.830x0l-  19.42xlO -

kiC1012
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Table 5 (continued)

Pole 100 Meter Antenna
Group Element Normalized Value (ohms, farads, henries)

10 L 0 1  135.7 14.40x10-6

L 102 658. 69.82x10- 6

S103 275.5 29.23xi0-6

L1o4  145.5 15.44x10- 6

S105 369.8 39.24x0 -6

L106 58.33 6.189x10-6

LIO7  148.4 15.75x10-6

L108 58.4 6.196x10-6

L 110.7 11.74x10-6

L 497.8 52.82x10- 6

L1010 1998. 212.Oxl0- 6

Nis
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For these reasons, two circuits for the circular loop are con-

structed, representing two degrees of complexity. In the first, only the

type I poles of each eigenmode are used. In the second, all poles necessary

for a PR result are used, except when the data is insufficient for a PR

result, in which case the type I and type III poles are used.

4.4.1 Type I Poles

Given that the type I poles are the major contributors to the total

. admittance of the loop, and that the non-PR excursions of these pole-pair

admittances are quite small, a modified Bott-Duffin synthesis of the type

used for realizing the first layer poles on the straight wire is implemented.

Because the loop is a closed object, it has a pole located at s = 0. This

pole represents the magnetostatic inductance of the loop which was realized

straightforwardly as a lumped inductor. Only the type I poles for the first

10 modes were used in the equivalent circuit. These are sufficient to real-

ize the response to the bandwidth of excitation used. The resulting circuit

is shown in Figure 65. Table 6 lists the element values, both normalized and

for a 100 meter radius antenna.

Again the circuit was analyzed by SCEPTRE and compared to TWTD

results. Figure 66 displays this comparison. The agreement in early time is

excellent, but the peak values of the circuit are approximately 15 percent

higher than the TWTD response. In the late time the circuit response is off-

set from the TWTD response by about 0.2 ma, and the circuit response shows

oscillations.

k I.
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Table 6

Element Values for Circular Loop Equivalent Circuit Using Type I Poles

.1 100 Meter AntennaMode Element Normalized Value (ohms, farads, henries)

2.0 L 01 2165. 721. 5x,0-6

1l 47.35 47.35

C 11i 9.918x1 4  330.6xl102

L 1925.5 308.5xl10 6

2 R 116.63x10 3  
16.63x103

C21  2.802xl0 93.4x1&1
C 22  1.335xl102 4450.xl10 12

L 1862.5 287.5>

313

C 31  1.529xl&-5 50.98xl0-12

C 32  8.616xl104  287.lxl0-12

L 1818.1 272.7xl106

4R41 24.21xl103  24.21xl10

C 41  1.OO7xlcf4  33.58x10-12

C 42  3.189xl1& 4  106.3xl&-12

L 41 785.7 261.9xl10 6
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Table 6 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

5 R 26.98x10 3 26.98x10 3
51

C 1  7.332x10-5  24.44 x10-12
C51 1.660x10O -4 2x112

L5  760.2 253.4x10-6
-51

6 R29.24x10 3  29.24x10 3

C C61  5.682x101  18.94x101
C62  1.016xl0O3.611

L 61  738.9 246.3x10-6

7 3R

R71 31.llx10O 31.11x10O

C 71  4.596x10-5  15. 32xl1012

C 72  6.858x10-5  22.86x10-12

L 7 720.9 240.3x10-6

8 R8  32.68x10 3  32.68x10 3

C8  3.831xl0 5  12.77x1&12

C81498l- 64xO1
82 4981 5 1.61 1

L705.3 235.lx10-6

81I
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Table 6 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms* farads, henries)

9R134.02x10 3  34.02x10

C 13.27x10 5s 10.9X10 12
C 92  3.729xl105 12.43xl1&12

L 91  691.2 230. 4xlO-6

10 R0135.17x10 3  35.17x10 3

C 101  2.838xl10 9.46x10-12

C 102  2.916x10 - 9.72xi 12

L11678.6 226.2x10-6
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4.4.2 Type I and Type III Poles

The departure of the transient current response of the circuit

from that of the TWTD model in late time displayed in Figure 65 for the type

I pole-pair synthesis is attributable to the omission of type III poles in

the frequency range of interest. Therefore a circuit is constructed which

includes all type III poles for each eigenmode, up to the cutoff frequency

given by mode 10. For mode 0, the type II pole is grouped with the type III

poles, since this results in a PR function. For modes 1 and 2 and type I

plus type III pole groupings, the admittances are PR; for higher modes, they

are not. For these higher modes the modified Bott-Duffin procedure is used

to make the groupings PR. The circuit derived is given in Figure 67, with

element values given in Table 7.

An analysis of this circuit on SCEPTRE and comparison to TWTD

showed an improved response, particularly in the late time, as indicated in

Figure 68.

4.5 Sensitivity of Circuits

Although the circuits derived for the straight wire and the loop

are in principle realizable, practicality of the realization still may be

limited by sensitivity considerations. In order to assess the sensitivity,

the two circuits previously described for the center-driven wire are sub-

jected to pseudorandom changes in element value over a range of +10% to -10%.

The random number generator is given in Reference [191. In the range of -10

to +10 it has a mean of zero and a standard deviation of 5.8. No attempt

was made to do a complete Monte Carlo or worst-case analysis on circuit per-

formance. Several circuits with errors were made. The resulting circuits

L ---- '- -- .... i ... ... -- .... .. - " ": "L ' '" " ..... . ... .. .: .... . .. . .. .. ....... ... ..
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Table 7

Element Values for Equivalent Circuit for the Circular

Loop Using Type I and III Poles

100 Meter Antenna
7dMode Element Normalized Value (ohms, farads, henries)

.40 Ro.12.6xl10 3  12.6xl0 3

R02 22.34x10 3  22.34x10 3

R03 1.123x10 3  1.123x10 3

R04  120.7 120.7
R05  819.2 3819.2 3
R06  408. 4X103  408.4x103

R71143 1143.

R08 122.9 122.9
Rog 168.4 3168.4

Roo401. 3x103  401. 3x103

Roll 2208 2208

R012 60.2x10 3  60.2xl10 3

R013 43.92xl0 3 43.92xl103R014  43.15xl0 3 43.15x103

R015  292.8x103  292.8x103

C 01  5.334x10-5  17.78xl1&12

C 02  1.233xl0'5  4.l11xl10 12

C 03  8.289xl106 2.763x 10712

C 04  2.473xl10 8.242x10-12

C 05  2.896xl0 - 965.3x10 12

C 06  1.089xl10 5  3.631xl10 12

C07  1.699xl102 5663xl10' 2

C 08  1.520xl105 5.065x10-12

C 09  6.999x10-2 23330x10-12

C 010  2.076xl0-3 691.9x10-12

C0Oil 4.752x10-5 15.84x10-12
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Table 7 (continued)

Mode Eement100 Meter Antenna
MoeEeetNormalized Value (ohmss farads, henries)

0 C 012  l.772x10-5  5.907x10-12

C 013  2.319x10-8  .00773x10-12

:.~ 014  6. 8 x & ~21.62x 101
* C0  3.048x10-8 .0101

016 1.958x10-4  65.27xl1
017 6.1x1 8 02305xo1
C 018  4.260x10-8  .0142 xlO-12

C 019  1.552x10-4  51. 73x1&-12
C 020  5.808xlo06  1.936x1&-12

C021  4.959xlo-8 . 01653xo1
C 022  8.103x10-6 2.701xl10 12

L 00  2165 721.5x1&-6

L 17653 2551x10-6

L 29657 3219x10-6

L 3286.4 95.46x10-6

L 04  2344 781.3x10-6
L 05  1.503 . 5009x10-6

L 62.445 . 815x10-6

L 73198 1066x10-6

L 81.144 .3812x10-6

L 93.411 1.132x10-6

399. 133.2x10-6

LOl2.1 * 7xl10 6

L028.376x10 5  
.1792

L03408.6 136. 2x10-6

L04608.1 202. 7x10-6

L051219. 406.4xl10 6

L061.428x10s 47598x10-6
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Table 7 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

0 L017 1.026x105  .03412

L 749.4 249.810-6

L 537.0 179.x06

L019 873.9 291.3x1076

L021 3.45x106 1.15

I Rll 49.36 49.36

12  1182 1182

R13  27.07x103  27.07x03

R1 4  2294 2294

R15  8.314 8.314
R16 111"6x103 111"6×103

R1 7  9460 9460

R18  30801x103 30801x03

C1 1  9.891x10- 4  329.7x10-12

C12  6.309x10-6  2.103x10-12

C1 3  1.958x10- 5  6.528x10- 1 2

C14  8.027xi0-2  26757.x10-12

C15  1.258 .4193x10-6

C16  5.979x10-6  1.993x10-12

C1 7  6.636x10-6 2.212x10 1 2

C1 8  9.369x10- 5  31.23x10 1 2

C1 9  8.433x10- 6  2.811x10-12

C1 1 0  1.459x10- 9  .4862x10- 1 5

I"
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Table 7 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

Ll 1  1700 566.5 xlO- 6

L12 2.399x104 7997x10 6

SL 13  1531 510.3x10-6

L14  2159 719.7x10-6

L15 930.3 310.1x10- 6
L16 .3735 .1245x10-6

L 17 20.56x106 6.852

L 1616 538.6x10-6

L18 5016 1672x10-6

Ll 0  322.2x106  107.4

2R21 1.521 1.521

R22  5199. 5199.

R23  29.63xi03  29.63xi03
R24  12.69xi03  12.69xi03

C21  2.734x10-4  91.14xi0-12

C22  6.549x10-6  2.183x10l12

C23  6.627x106 2.209x10-12

C24  7.314x10-6 2.438x10-12

L 2750 916.5x10-6

L22  2492 830.6x10- 6

L 868.5 289.5x10- 6

L2 4  2462 820.8x10- 6

244
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Table 7 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

3 R 31  62.01x10 3  62.01x10 3

R 327.98x10 3  27.98x10 3

311.469xlcF 48.95x101

C2.535xl1& 6  .851112

C 3  1.090X10 3  363.4 x101

C 332.242 x10-6 .7474xl1012

C2.448x10- 6  .8159x10-12
C35

L3  4248 1416xlcf6

L 31 3891 1297.x10-6

L823.5 274.5xl106

L 34398. 1466xl106

4R 1 71. 58xlO 3 71. 58x10 3
4R 412.3x1 

3R 42 212.4x1021.4l
R43 34.31l0 34.31xl0O

C 1  9.588x1&5  31.96x101

C 42  2.046xlcf .6821xltf1

C3 3.735x104  124.5 xl01

C 44  1.607x10 6 * 5355xl0'12

C 4  1.644xl10 6  .548xl10 12

L4  4038 1346xl1& 6

L 13945 1315x1&'6

L 3789.9 263. 3xl0 6

L4  5025 1675xl&'6

L4
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Table 7 (continued)

ModeEleentNormlizd Vlue100 MeSter Antenna

5( d R51~ n Normaized Valu (Ohm s , farads, henries)

5R 52 75. 9xJ0 3  79.92x10 3

R52 2 15x03 215.6x103
115340. x10 3

40.3x10 3

C5 .1  6.942xi1& 5  
23.14xio&1 2

C52  1.732l06 
. 5773xl0'12

C53  1.883x10-4  
62. 78x10'12

C 54  1.229xl10 6  
. 4095xlo&12

55  1.151x10 6  
. 3837x10-12

513804 1268x10 6
52 3957 1319xio0 6

L 53  763.2
L 545580254. 4x10-6
L54  5580186 xI cf6

6 
29614o 29.24xl00 3

C 61  5.682x10-5 18 x02
C 6 2  1.016x10-4  89xo1

33. 86x1&- 1 2

L 1738.9 
246.3xlcf 6

7 R 
31 l l l

C 71  4.596xlo05  
15 -2112

C 72  6.858x10-5  15228x10

L 1720.9 
240.3x10-6
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Table 7 (continued)

100 Meter Antenna
Mode Element Normalized Value (ohms, farads, henries)

8 R132.68x10 3  32.68x10 3

C 81  3.831x1&-5  12.77xltf12

*C 2  4.938xl10 5  16.46 x10-12

L705.3 235.lx10-6

9 R134.02x103 34.02x103

C 91  3.27x1&-5  10.9X10-12

C379i-5 -12* C9  3.79x1012.43xl0

L91  691.2 230.4x10-6

-10 R101 35.17x103  35.17x103

C101  2. 838xl0-5 9. 46xl0-1

*,IC 10  2.916x10-5  97x1 1 2

L11678.6 226.2x10-6
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[i were then run on SCEPTRE. A typical result, compared to the uncorrupted run,

is given in Figure 69 for the first layer pole-pair synthesis. The responses

are identical in the early time, where only the object's force response is

important. In late time, the pole shifting caused by the element variations

results in a distorted response. The sensitivity of the eigenadmittance

circuit was also examined this way, with a similar result. This is not sur-

prising, since it is well known that a Bott-Duffin synthesis is very sensitive

to element errors [15].

-l 3
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CHAPTER V

CONCLUSIONS

We have demonstrated the feasibility of synthesizing passive-

component equivalent circuits which simulate a single-port immittance of a

passive antenna/scatterer. Circuits developed here replicate well the

terminal response of straight-wire and wire-loop structures except in the

early time. It is conjectured that circuits which account for the static

capacitance of the structure completely, can bring this early time behavior

into agreement, as well.

From the point of view of developing simple systematic equivalent

circuits, one would desire that pole-pair contributions to immittance would

prove to be positive real functions. Disappointingly, this study reveals an

abundance of counterexamples to this desirable result. We have observed,

however, that the dominant poles in the resonant structure of the object -

those nearest the jw axis - have admittances which manifest a near PR behav-

ior. Through negligible adjustments to these admittances, PR behavior was

achieved.

Terminal eigenadmittances for the circular loop and center-driven

wire are shown to be PR within the limits of numerical accuracy. However,

certain terminal eigenadmittances for the quarter-driven wire are non-PR.

Although it is known that the inverse eigenvalues are PR, the PRness of all

terminal eigenadmittances remains to be demonstrated. Since the eigenset

grouping of poles is only conjectured, it is not possible to reach a definite

conclusion at this time in regard to terminal eigenadmittance PRness.

- 133 -LdL--
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The spherical antenna is suggested as an object for study of admit-

tance synthesis properties in the future. That eigensets are well-defined

and that each eigenset embraces a finite collection of poles provide the

potential for complete and conclusive studies.

The present work has addressed only the admittance element of

Norton equivalent modules. The companion source terms need to be studied

in light of the present work. In particular, when sources are combined even

on a pole-pair basis, the composite source exhibits a frequency dependent

4 transfer function from the excitation waveform. This frequency dependence

introduces circuit complexities which are likely to preclude physical real-

ization. Approximate methods for circumventing this frequency dependence

are warranted.

!1

iU



APPENDIX

The proof of the positive realness of the integral operators for

the antenna scattering problem is given here. This proof is due to Wilton

[13] and reproduced here.

Consider a conducting scatterer S with unit surface normal n illu-
minated by an incident field (E ,i). A surface current 3 is induced on S

-S -which produces a scattered field (ES H ) satisfying the boundary condition

nX (i + Es) - 6 (A.1)

on S. By the equivalence theorem, the scatterer may be removed and replaced

by the surface current J radiating in free space. This current, radiating

in the absence of the sources of the incident field, produces the scattered

field (E SH S) exterior to S.

In the absence of other sources, the total energy radiated by the

current distribution j is always positive semidefinite:

t
E(t) - J W(t) dt z , (A.2)

where E is the energy and W(t) is the total power radiated by J at time t and

is computed as follows:

W(t) - - f;s . jdS

s
- fi dS ,(A.3)

S

L - 135-
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where the lower case quantities are time-domain counterparts of the corre-

sponding upper case transform-domain quantities. The current j and incident

field e are related through an integral equation, which fact will be

exploited subsequently.

We next suppose the incident electric field and induced current are

given by

s t S*t S
3(,t) (r)e + J*Cr)e 0 2 R 0e , (A.4a)

. s 0 t sit e So( b
e (r,t) = E(r)e 0 + E*(r)e 0 . 2 Re[Efe , (A.4b)

where so a 0 + JW02 a 0 > 0, and where E0 is an arbitrary complex vector

function of position, and j0 is the resulting complex current response. The

excitation is assumed to start at t = - , where there is no initial energy

in the system. Since e 0= 0 for t = - , both e and j are zero and there

is no transient term. That is, the 'forced' response above is the total

response.

The power W(t) radiated is now

t"_2s t 2s *t 2a-t

W(t) [ f [ + .E e +(E 0 •e0 + J0 )e
0  dS

S 0i . 2sot -2a t.

- 2 Re J[ E0 0E e u + 2*et0 u dS

and hence the total energy radiated is

, ..... ... .. .... ... ,, .. .., I1 1 .. .. ...... .ITI ...
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EE) a. f{ 0  2s 0t + 0 a
-e dS (A. 5)

If we write the first integral in polar form,

S 0 0 j- dS " eo
sD

then E(t) can be written as

E(t) - eO[ f o dS cos (2w t +

fE 0 *dSi

+ Re " > (A.6)
a 0

We must consider the case w- 0 and 0 0 separately.

Case I, w 0

In this case, (A.5) can be written as

E(t) - e 0 tO [Re 0 + Re( * dS

0 S

- f Re [ 0 - Re j0 dS
0 S

2a
2eRe[E 0  Re Jd

20 fS e 'e 0 S
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from which we conclude that

f Re " Re 0 dS 0 0. (A.,7)
S 0

But since B0 is arbitrary, we could replace it by JE0 and the corresponding

current response would be jJ0 by the linearity of the system. Hence, from

(A. 7), it must also be true that

fRe(J o ) 0 Re(jJ o ) dS f Im 0 Im 0 dS z 0. (A.8)

S

Equations (A. 7) and (A.8) together imply that

Re f 0 "* d5 f(Re fO " Re 0 
+ Im E IM 0 ) dS 2 0. (A.9)

S 0S

Case 11, w 0 0

From (A.6), we note that since the maximum negative value for the

cosine is -1, we must have

Re f "' dS " f dS . (A.10)S 0 Ss 0
e S 0OS

Thus for both cases we have

Re f dS a 0, > 0 ,(A.1)
S 0 06 0 (.1

which is a necessary condition on all solutions of scattering problems involv-

ing passive scatterers.

Using (A.11) we next derive a condition similar to the positive

real condition on driving-point immittances in circuit theory. The condition
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f [-applies to the dyadic kernel of the operator relating J to Ei through the

electric field integral equation

ax - x JZ(,r;s) • 2(G';s) dS' (A.12)

S

Since E and J are transform quantities, (A.11) applies for a point a - Re s

in the right half plane:

Re J"(r) • z ) dS dS
S S

fJ *(;) * ((;') + J*(-r) r (,') • (' dS dS
$ S

;-2 f f[*(r) + 3*(;I) 2t(;,;,) J(;) dS dS
S S

f f[ *6 26; JG) + j*(r) * ( JdS' dS
S S

J J*( ). [(, + 2*(-,r')] • 3(')]dS' dS
S S

f f *(;) Re ;(rr') • J(r') dS' dS _ 0, (A.13)
S S

where the dagger denotes the transpose conjugate and where we have used the

reciprocity condition that

Ztr~ )- .*(,j') ,, !*(', ).

Thus, Re Z must be positive semidefinite for a > 0; i.e.,

Re 0, a 0, (A.14)

L4
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where (A.14) is a shorthand notation for (A.13), except for operators which

are merely complex constants.

We note that condition (A.14) is analogous to one of the so-called

: positive real conditions for immittances of m-port networks. For such net-

works, the positive real condition is shown to be both a necessary and

sufficient condition for the realizability of a passive network. The suffi-

ciency of the condition is established by actually deriving algorithms for

synthesizing such networks. We are not yet at this stage in electromagnetics,

but we are now in a position to list several independent conditions, analogous

to those of an r-port immittance matrix, which the impedance operator for a

passive scatterer must necessarily satisfy:

(1) !( ,';S) is analytic in Re(s) > 0;

(2) !(,';s) is real for real positive s;

(3) Re -(i,V;s) Z 0 for Re s > 0.

Though the sufficiency condition has not been demonstrated, we nevertheless

term operators with kernels satisfying these conditions as positive real. As

in network theory, it is possible to find alternative conditions for (M)-(3),

which are simpler to test. We also note that to arrive at these conditions,

we must write the integral equation in the form of (A.12). We point this out

because it is common to view the right-hand side of (A.12) as the scattered

field, in which case the left-hand side, in view of the boundary Landitions,

would have a negative sign. In this form, the resulting impedance operator

could be termed 'negative real'.



Next, we note that (,';s) can be written in terms of its eigen-

spectrum as

n (s)i5 ( ;s)jn (; s) '(A.15)

where A is an eigenvalue and n is the corresponding eigenvector satisfying
SI.n n

the eigenvalue equation

n (;';s) dS' X n (s)i (;;s) (.6
IS

and where J is orthogonal to all other eigenvectors
n

f~m(;;s) •n (;s) dS 6 . (A.17)

Note that ! is an operator-valued analytic function of s and we assume that

A and J are likewise analytic. The absence of the complex conjugate in then n

second eigenvector in (A.17) is at first disconcerting, but it should be

remembered that the operator Z is not self-adjoint, but is complex symmetric;

i.e., !t( ', ) = *(, '). Briefly, the eigenvectors n should be biorthogo-n

nal to the eigenvectors of the adjoint operator, 2t (r',r), which, in view of

the complex symmetry of !, are just j*. The resulting biorthogonality con-
n

dition is (A.17).

We note that (A.13) must be true for all possible current distribu-

tions S and hence must be true for (;s) i M ( ;s). Substituting this con-

dition and (A.15) into (A.13) results in
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R e JJf ueta X (s)psii (rre)adS' dS

Re X() f 0 , ( d 6A

(b) ole of (a Rne magnr axSs mus d e sipZ an0hrs e

S

from which we conclude that Ae (s) is positive real

) Re ((s)) 0 a > (A.18)

a!

It can be shown that for scalar quantities, (A.18), together with the require-

ment as) is real when s is real, is equivalent to the following conditions:

(a) Ai n (s) has no poles or zeros in the right half plane;

n

(b) poles of A (s) on the imaginary axis must be simple and the residues

evaluated at these poles must be real and positive;

(c) Re XAnjW) Z0 0 S W m.

The latter condition is particularly important because it requires only the

examination of A on the jw axis rather than in the whole of the right half

plane. As an example of the application of these conditions, we note that

for a wire loop there exists only a *-directed current, which is found by

requiring the f-component of electric field to vanish on the loop. Thus the

kernel is scalar-valued and has been found by T. T. Wu to be
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Z(,,') - Jnrwo n e- j n ( Of ')

- jnO 0  + jnO1a ([e
-jn(f- ') + ejn( ')] , (A.19)

00 n-i

where the rearrangement to the trigonometric form is made to more closely

* compare with (A.15). Thus, Jan(s) must be positive real. But Ja (s) is

* positive real if and only if n is positive real and it has been

verified by direct computation that has no poles either in the

right half plane or on the jw axis, thus satisfying conditions (a) and (b).

Condition (c) implies that we must have

"Re 1 - Im-- >0 0 W
ja n(jW) an (iw) -

which appears to be true [18].

Finally, we consider the Jw axis poles of the inverse operator,

whose kernel is the resolvent kernel

n,s) - X(s) " (A.20)
n n

We know that poles on the jw axis must be simple and that the vector compo-

nents of the current nn' which are cavity mode currents, are cophasal and

hence, because of the normalization (A.17), are real. Furthermore, at a

pole, one of the eigenvalues, say Xm, has a simple zero and can be approxi-

mated by the first term in its Taylor series for a pole at s0 by

I
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)m(s) - a1 (s -

or in polar form by

X(s) a ei eJ  ,

where (s - a 0 a Since the pole term will dominate, then on the

semicircle of radius c in the right plane, we have the condition

Re f fJ Z*J dS' dS
S S

= co~ s +O . 0 (.1

SRe fJ f cicS dS

2 1

- f (,) * (; ,s) dS Re 14
S a e e1

f ;s (i) dS2

-Cos (0 + ) 1O, (A.21)

where mil ase ". The condition (A.21) must hold for -i _ * _ i.e.,

for * in the right half plane, which is possible only if 0 - 0. This implies

that Ii
oi M dX M s's0  (A.22)

ds-

is real and positive. It can easily be checked that this condition is con-

tained in condition (c) above.

I![
€[
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Note that for antenna problems, we can take to be a unit voltage

source (i.e., a 6 function) at some pair of terminals on a and conclude that

the input admittance is positive real. The above proof establishes the PRness

of the inverse eigenvalues, but does not address the question of the PRness

of terminal eigenadmittances. The PRness of the terminal eigenadmittances

may be explored based on the PRness of the eigenadmittances 1 established

above and on (2.13), which is written here in terms of the natural current

modes and gap geometry as*

- r<J(;,s) a^ a>2

n (,,.(s) zJ (A.23)

It is convenient to define Yn(a) -- and

"-(s) 2 (A.24)2<J (r,s) ;

n , g nS

such that (as) - r r r
(nr i i r i i rY () F- y F ) + j(yn n + y Fn)•

n Ynn Ynan n n aYn

where the superscripts denote respective real and imaginary parts. It fol-

lows that PRass of Yn(S) hinges on the adherence to

r r ii Re s1 a . (A.25)
arLn nn

*The foregoing material due to Wilton used his notation of explicit expression
of integration. From here forward, we revert to the symmetric product nota-
tion used througbout the body of this work.

c[
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Because of the complexity of (A.24), it is difficult to draw gen-

eral conclusions regarding the satisfaction of (A.25). Clearly, one might

test (A.25) on a numerical basis, but to do so would be computationally

costly since an eigenvalue problem would need to be solved. For the case

that the eigenmodes J are pure real for s - jw, it follows directly fromn
(A.24) and (A.25) that the terminal eigenadnittances Yn (s) are PR. This is

the case for both the loop and sphere geometries, but the real modes for

these structures devolve from symmetry degeneracies. On the other hand, the

first few natural modes on the straight wire exhibit small real parts for s

near the jw axis, and (A.25) is likely to be satisfied.

With the respective high-Q and low-Q extremes of the straight wire

and the sphere likely yielding PR terminal eigenadmittances, one might be

tempted to draw broad conclusions. However, some common topological feature,

such as convexity, might bear on the results for these two special cases,

thereby qualifying any general conclusions which one might draw.
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